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Abstract: We consider atom-surface scattering at low surface temperature, fixed

incident energy and fixed interaction potential. We examine the limit as the mass m of

the incident particle -- oc, and thus its de Broglie wavelength --* 0. We show that in

this "classical" limit, the Debye-Waller factor (a quantum effect) for the strictly elastic

scattering amplitude tends to a finite limit. We propose scattering of 20 meV Ar atoms

from cold Cu(111) as a promising experiment to verify this effect.
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I. Introduction

Surface scattering experiments are generally regarded from the standpoints of two

extreme regimes: the quantum mechanical regime or the classical regime. Consider a

surface which is cold (T : 0) and relatively smooth (exhibits little or no diffraction).

Then quantum mechanical scattering is exemplified by a light incident atom such as He

with a low initial energy of say, 20 meV. Under these conditions, one-phodbn peaks may be

easily distinguished, and the technique is often used to measure surface phonon dispersion

curves. 1 On the other hand, classical scattering occurs with heavy incident particles such

as Xe at hyperthermal energies 2 of several eV. The results of such experiments are usually

compared to either classical or semiclassical calculations. 3 The transition between these

two regimes is continuous. However, it is generally expected 4 that, as the mass of the

incident atom is increased, characteristic quantum effects disappear. We will however

show that (in a particular sense) quantum effects remain finite, if the initial energy of the

incident atom is kept fixed.

To clarify the discussion, we re-express the distinction of regimes in terms of the fol-

lowing dimensionless parameters : A/d and fi, where A is the de Broglie wavelength of the

incident atom, d is a "range" of the atom surface interaction, and ft is the mean number

of phonons excited by the collision. Consider first scattering from a rigid lattice. Then the

incident atom behaves classically if A < d and quantum mechanically if A -> d. Similarily,

the lattice behaviour is characterized by n. If after the collision ft -, 0(l), the lattice

exhibits quantum effects, while for ft > 1, it behaves classically. For the experiments

described above, both incident atom and lattice behave either classically or quantum me-

chanically. A typical energy loss spectrum in the latter regime, integrated over all outgoing

directions, is shown in Fig. 1. At AE 0 0, there is a substantial no-loss line due to elastic

scattering from the surface (this has been broadened in the figure to simulate a finite en-
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ergy resolution). This is a characteristic quantum effect since, for classical scattering with

a finite incident energy, there is necessarily a finite energy loss to the lattice 5 We refer to

the scattering as weakly inelastic when most of the outgoing distribution lies in the no-loss

line.

In this paper, we are interested in a mixed regime : A < d but A - 0(1). This

may be achieved physically by a heavy particle (of mass m) with low incident energy

E striking a surface. For fixed E, as m is increased, the initial velocit¢ of the incident

atom v decreases and the scattering becomes increasingly adiabatic and more and more

nearly elastic. In the limit of infinite mass, the scattering is completely elastic, and the

adiabatic limit is achieved. For large but finite m, the scattering is almost adiabatic, and

we call this the quasi-adiabatic regime. In this regime, the energy loss spectrum of Fig.

1 is compressed toward the AE = 0 region. However, assuming we have sufficient energy

resolution to determine its shape, there are three possibilities which may be imagined :

(1) the scattering becomes completely elastic and the inelastic shoulder disappears, (2) the

system behaves classically, and the elastic no-loss line disappears or (3) a finite fraction of

both elastic and inelastic scattering remain, as illustrated in Fig. 2. We show in this work

that the third of these possibilities actually occurs, providing a striking demonstration

of a quantum mechanical effect that does not vanish as the mass of the incident atom

grows large. (However, the splitting between the elastic peak and the inelastic shoulder

approaches zero.)

In section II of this paper, we make a realistic estimate of the Debye-Wd.Ller factor in

the limit of large m, but first we give a simple plausibility argument for the above claims.

Let us denote by v the velocity of the particle during the interaction, and by r(- d/v) the

nominal collision time. As m grows, r grows as n1 / 2. The slowly varying force exerted

by the incident atom on the surface atoms can excite only those modes with frequencies

w - 1/,r, i.e. only long wavelength acoustic phonons. The probability of exciting a single

3



I.

phonon of frequency w is then approximately6

- (1)

where Ak 3 is the perpendicular momentum transfer to the surface for elastic scattering

and u2(w) is the contribution from a normal mode of frequency w to the mean square

vibration of a surface atom perpendicular to the surface in the undisturbed crystal. The

elastic fraction, written e- 2W, is the Debye-Wa.ler factor. For small W,e - 2W zz 1 - 2W

and by flux conservation

2W-- Ak (). (2)

This is just the standard expression for the Debye-Waller factor (well known from X-ray

and neutron scattering 7 ), except for the cut-off at w = 1/,r due to the slowness of the

incident atom. We may estimate 2W using the bulk properties of the solid in the Debye

model:
8

2W ( J ( __" ) 2 u 2 "- (3 )

where wD is the Debeye frequency of the crystal, M the mass of a lattice atom, E±-

k2/2m, and < u2 > is the mean square of zero point vibrations in the crystal perpendicular

to the surface. Note that this is independent of m, and therefore W remains finite as

m -4 o0. Finally we note that, with an attractive well of depth D, E, should be replaced

by E± + D in equation (3) (the Beeby correction). 9 Thus, we still find a finite Debye-Waller

factor for m --. oo.

In section II we describe our model for the atom-surface interaction and the approxi-

mations used to calculate W more accurately. The quasi-adiabatic regime is discussed and

illustrated in section III by simple models for the interaction. In section IV, we apply these

results to noble gas scattering from metal surfaces, and suggest an experiment for the case

of Ar scattering from Cu(111). We choose this system because the static corrugation is
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i.

expected to be small (so that diffraction effects may be neglected) and because it provides

an experimentally accessible system with a relatively heavy incident atom. Properties of

other systems are compared with this. In section V we discuss our results and their impli-

cations for future work, both theoretical and experimental. Appendices A and B deal with

technical details; appendix C demonstrates the validity of the trajectory approximation

for weakly inelastic scattering in the quasi-adiabatic regime.

II. Theoretical Formulation

In this section, we introduce a model for the atom-surface interaction and demonstrate

how the final energy and angular distributions may be calculated from it. We are interested

in the quasi-adiabatic regime, achieved by m --+ oo, keeping E and all substrate properties

fixed. However, to simplify the calculations, we make several approximations which are

valid for noble gases scattering from metal surfaces at thermal energies, the specific systems

studied in this paper. For example, we assume throughout that the displacements of the

surface atoms are small. We also use the trajectory approximation 10 (TA) to calculate

the scattered distribution. Although the validity of the TA is proved here (Appendix

C) only for weakly inelastic ,quasi-adiabatic scattering , we expect that the qualitative

conclusions remain valid also for strongly inelastic scattering. Throughout, we use the

standard notation for surface scattering : A vector v has components V in the surface

plane and v3 perpendicular to it; its length is denoted by v. The only exception to this is

the use of z to denote the component of the incident atom's position perpendicular to the

surface. We also use, in general, primed letters to denote quantities after the collision.

A. The Atom-Surface Interaction

We make the Born-Oppenheimer approximation 11 for the electronic motion, which is
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valid in this regime. Then a general atom-surface interaction may be written V(r, {u})

where r is the position of the incident atom, and the set {u} is the set of all displacements of

the atoms from their equilibrium positions in the crystal lattice. We make the assumption

(for simplicity only) that it may be modeled by a "perpendicular" potential function of

the form

V(r, {u}) _- Vj.(z - Z(R, {u})), (4)

where r = (R, z) is the position of the incident atom and Z(R, {u}) is the so called cor-

rugation function for the atom-surface system, which is chosen to best model the true

many-body potential. The corrugation function will also be a function of incident energy,

not written explicitly here. For the small incident energies discussed here, the incident

atom remains far from the surface atoms, and this approximation will be valid. For small

displacements of the surface atoms,

V(r, {u}) = V(r, {o}) + ul.Vv' +, (5)

where I labels each equilibrium site in the crystal, and {0} indicates no displacements

from equilibrium; the gradient with respect to uI is denoted V I.Then, for a perpendicular

potential, as defined by equation (4),

)ov..

V(r, {u}) = VL(z - Zo(R)) - Y uy,.f(R - L)2-- _Zo(R)+.. (6)
L

where ZO(R)(- Z(r, {0})) is the static corrugation of the surface, and f(R) is the so-called

transfer function, defined by

f(R) aZ(R, {u}) (7)f(R) = 8uo R,,{O }"

An illustration of Zo(R) and f(R) is given in Fig. 3. For short-range interactions, dis-

placements of atoms beneath the surface will have small effects on the potential seen by

the incident atom so we retain only the 13 = 0 (surface layer) term in the sum in equation
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(6). From equation (6) we see that this function, coupled with knowledge of the elastic

scattering potential, Vj.(z - Z 0 (R)), and its first derivative, is sufficient to determine the

potential for small displacements of surface atoms. Then, for a system of negligible static

corrugation, the Hamiltonian takes the form

H = Hi, + Ho + Fjjz). (R), (8)

where HiL, = p2 /2m + V(z) is just the Hamiltonian for the inciden* particle scatter-

ing from a rigid latttice, H0 is the Hamiltonian for the undisturbed crystal, Fj(z) =

-8V±(z)/8z is the force exerted on the incident atom by the crystal and f(R) = E uL.f(R - L)

is linear in the surface atomic displacements. We expand the displacements in terms of

the harmonic normal modes of the half-crystal:

UL =ZU(wq)vq(aq + atq)eQL (9)
q

where

u(wq) h (10)VEYN MWq

In this expression, advantage has been taken of the translational symmetry parallel to the

surface ; N is the number of atoms in the crystal; M is the mass of a crystal atom; Q is the

phonon momentum parallel to the surface; q = {Q, q3} labels the 3N different modes and

-q = {-Q,-q3}; a. and agq are creation and annhilation operators for phonons labelled

q, with frequency wq and displacement vector Vq in the surface layer. The function u(wq)

is just the magnitude of the zero point displacement in the bulk due to a bulk phonon

of frequency wq, while %urface effects are contained in the displacement vector Vq. Its

normalization and dependence on uq are given in appendix B. We also define the surface

Fourier transform of the transfer function

Y(K) = I/ d2Re i'R f(R),

7



where A is the area of the surface unit cell, and S represents the entire surface. The sum

over L now yields

(R) - r F(G Q) Vqei. u(wq)(aq + aq). (12)
G,q

As only low frequency modes are excited, we approximate r(K) by its behaviour in the

long wavelength limit which yields

(R) = -(vq)3e"QRu(wq)(aq + at q) (13)
q

(see appendix A).

B. The Trajectory Approximation

Although the Hamiltonian has been simplified by the approximations of section A,

the scattering problem is still not easily solved, especially for strongly inelastic scattering.

We therefore solve it within the trajectory approximation (TA),' 0 in which the incident

particle is treated classically, while the surface is treated quantum mechanically. For weakly

inelastic scattering in the quasi-adiabatic regime, this is shown to be valid in appendix C.

First we calculate the classical trajectory of the incident atom, with the atoms fixed

in their equilibrium positions. This is the so-called recoilless classical trajectory. We then

have a simple classical one-dimensional scattering problem with a potential of the form

shown in Fig. 4. For this uniform potential, the classical equations of motion decouple,

and we write

r = (Vt, ;,I(t)) (14)

where V is the initial velocity parallel to the surface . The TA Hamiltonian then becomes

(see equations (8) and (13))

HTA = q Zw(aq a + 1/2) + E Uq(t)(aq + at) (5

q q
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where

Uq(t) = F(t)eiQVtU(wq)(vq) 3. (16)

The function F(t) is just F-(z) evaluated on the classical trajectory z(t). This Hamilto-

nian describes a set of uncoupled linearly driven oscillators, whose final states and corre-

sponding energy and momentum changes may be easily calculated. 0 The distribution of

energy loss and momentum exchange of the incident atom is then deduced from conserva-

tion laws to be

SV(AE, AK)= J dt f d2R./(t, R)e iAEt+iA K 'R (17)

where

.KV(t, R) = exp{lj Uq(wq)i 2(exp[-iwqt - iQ.R] - 1) (18)
q

The variables AE and AK denote the energy loss and surface momentum exchange re-

spectively, while Uq(w) is the Fourier transform of Uq(t). The constant term (independent

of t and R) in equation (18) gives a contribution to the final spectrum proportional to

6(AE)i(AK), i.e. it is the Debye-Waller factor . Using equation (16) it can be written as

2W =1 F2 (wq + q.V)u2 (wq)i(vq)312 . (19)
q

This result has the same form as equation (3), as F(O) = Ak 3 and for large incident mass

F(Wq) will be cut-off at about 1/r. In the next section we will analyze this result and the

energy loss spectrum in the quasi-adiabatic regime in more detail.

III. The Quasi-Adiabatic Regime

In this section we discuss the behaviour of the energy and momentum transfer dis-

tribution found in section II (equation (18)) in the quasi-adiabatic regime. We introduce

dimensionless variables to show explicitly the dependence on m of each quantity calculated.
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In particl-ar, we find that the mean number of phonoas excited and the Debye-Waller fac.

tor are independent of m, while other properties, such as the shape of the energy loss

distribution, scale in simple ways with m.

To begin with, we restrict our attention to normal incidence on a surface at zero

temperature, and calculate the angle-integrated energy loss spectrum. For the classical

trajectory of the incident atom, we choose the origin in space and time to be at the position

and moment of turning , i.e. dz/dt = 0 at z = 0 and t = 0. As we are interested in the

behaviour of the system as m - oc we write the trajectory in terms of the dimensionless

variables usc- in section I : = z/d, s = t/r and 12 €(C) - Vj(z)/E. The equation of

motion for C is then

, (20)

where C" d2 C/da 2 . The boundary conditions are C'(±oo) = ±1. With this choice of

origin, C(s) is symmetric in j, and independent of rm (but not of E). In terms of these

variables, the energy loss spectrum is denoted AVf, where e = AEr/h and the normalization

is chosen so that f A/'de/27r = 1. Then, from equation (16), with R = 0, we may write its

Fourier transform as

A(s)= exp{a[x(s) - x(0)I), (21)

where

x(J) =,jd , 12 ve-ia, (22)
X () "" d 2u2 >e,

24- 3 > (23)d 2 'd

and (" is the Fourier transform of C"(s). In these expressions, we use the long wavelength

Limit to calculate the phonon properties, as described in appendix B. The quantity < u3

is a measure of the zero point displacements perpendicular to the surface of atoms in the

surface, and is also described in appendix B. The Debye-Waller factor is then given by

10



exp-ax(O), so that 13

2W = aIl, (24)

where In = f. d&nn'C,(! '. This shows explicitly that 2W is independent of m, and has

the form of equation (3).

To illustrate these results we use two simple potentials for which analytic results may

be obtained : the exponential repulsion and the Morse potential. For both potentials we

choose d to be the decay length of the repulsive part of the potential and a = 0.1, a

value appropriate for the experimental conditions discussed in section IV. For the Morse

potential, we also choose a well-depth D = 2.3E for the same reason. The dimensionless

forms for the Fourier transform of the acceleration are then

sinh7rv (25)

for the pure exponential repulsion and

-27r coshirv (26)

sinhirv coshir'

for the Morse potential. Here 3 is a function of E/D, with a value of 1.6 for our cue.14

These functions are plotted in Fig. 4, and their corresponding final energy spectra in Fig.

5. The dramatic difference is due to the attractive well, which accelerates the incident

particle as it passes over it. From Table I, we see that this greatly enhances I1, leading

to a major decrease in the Debye-Waller factor. We stress the fact that this reduction is

entirely due to the attractive well, and is not due to the large incident mass.

To clarify further our discussion of the loss spectrum, we introduce a number of pa-

rameters characteristic of the collision. From the spectrum given by equation (18), it

can be shown that the mean phonon frequency to which the incident atom couples is

= (/I2/l)lr - 1 . The mean energy loss may also be calculated, and we find AE = taI2 /r.

Then a measure of the number of phonons excited during the collision is given by A =

11



A or

n= 2W. (27)

The meaning of this result is intuitively clear :when few phonons are excited (Ft <~ 1),

the scattering is predominantly elastic (weakly inelastic scattering ), while for ft > 1, the

converse is true.

Next, we briefly discuss temperature effects. Equation (18) may be eas~ily generalized1 0

to finite surface temperature, T. The only change this leads to in equation (19) is an

extra multiplicative factor of coth(wq/2kBT), due to the thermal motion of the crystal

atoms. For small T, the Debyc-Waller factor behaves as a gaussian function of T. We find

W(T) = W(O) + T 2 /T 2 , with

1 ri_ (28)

where kBTr = t/r. From the definition of a (equation (24)) and using -r = d/v, it is

straightforward to show that T is independent of the functional form of the potential.

However, the range of temperature over which the Debye-Waller factor displays gaussian

behaviour is determined by the form of the interaction potential. For high temperatures

(T > T,) the usual exponential dependence of the Debye-Waller factor is regained, with

a decay temperature of

t = Tr(29)
2aIO

The dependence of T on the other parameters differs markedly from standard expressions,8

due to the cutoff in F±(w) at 1/".

For any finite temperature, as long as m is finite, there is a finite Debye-Waller factor

However, as m -- oc with T finite, T > T-, so that coth(wq/2kBT) > 1 for all excited

phonons, and the probability of excitation is greatly enhanced. Hence, as m --+ o, the

Debye-Waller factor approaches zero.

12



The angular distribution is gaussian, of width

Ow = (aI_ ) (30)

where va = h/md and ct is the transverse speed of sound in the crystal. The dimensionless

constant A is an elastic property of the crystal, with a value of 0.9 for Cu (Appendix B).

IV. Application to Scattering of Rare Gases .

We begin our discussion of results with the system : Ar incident on Cu(111) with an

initial energy of 20 meV. This is a good system for experimental verification of this effect

for a number of reasons. Of primary importance is the fact that Ar is sufficiently heavy, so

that the quasi-adiabatic regime may be achieved at low incident energy. Furthermore, the

well-depth of the interaction potential is sufficiently small so that the elastic peak remains

resonably strong (see Fig. 4). Another useful feature which simplifies the calculation is the

smoothness of a (111) metal surface, which allows us to neglect diffraction. However, even

with these simplifications, we offer only a semiquantitative calculation of the Debye-Waller

factor . Our purpose is simply to show that this effect occurs for Ar scattering from Cu,

and that it is detectable.

For the elastic scattering potential we assume a simple exponential repulsion plus a

long range Van der Wasals attraction:

(z = ve)C 3  (31)VO(Z)= Ao-z/d (Z - Zref)

The constants C3 and zef are given by Zaremba and Kohn.15 We expect the Ar - Cu

repulsion to have approximately the same z-dependence as the He - Cu repulsion (as

suggested by the Norskov recipe)' 6 . The proportionality constant 17 is 4.6. We also take

the He - Cu repulsion from Zaremba and Kohn.15 The values we use are listed in Table

II, along with other characteristics of the potential. These numbers are only estimates,

13



and should not be regarded as highly accurate. The most important characteristics of the

potential are the decay length of the repulsion and the well-depth, which is 45 meV. For

our purposes, its properties are very similar to that of a Morse potential of equal depth

and decay length, the difference in the long-range attraction being of no importance.

The energy loss spectrum, integrated over all outgoing directions, calculated in the TA,

is plotted in Fig. 5. The surface is at zero temperature. The spectrum has been convoluted

with a gaussian of width 2 meV, to simulate an experimental resolution 'f 10%. Its shape

is very similar to that of the Morse potential shown in Fig. 4, except for the cutoff at

the incident energy. The elastic peak contains about 10% of the scattered particles, while

another 50% are scattered into the inelastic shoulder. A further 40% remain stuck to the

surface (negative final energy in the trajectory approximation). The energy of the incident

particles in the interaction well is - 65 meV, whereas the calculated mean energy of the

scattered particles is - 46 meV, fortunately in qualitative agreement with the recoilless TA,

for which both energies would be 65 meV. (Qualitative considerations lead us to believe

that a better calculation of the Debye-Waller factor would yield a fraction somewhat larger

than the 10% fraction quoted above.)

We conclude our discussion of Ar on Cu by examining other properties of the outgoing

distribution. From Table III, we see that the angular distribution is quite narrow (a half-

width of 2), so that a detector with a wide aperture (about 80) could count all scattered

partides simultaneously. We can also show that the scattered distribution is insensitive

to the angle of incidence, so the experiment could be performed with the convenient total

scattering angle of 900. Lastly, the temperature dependence of the no-loss peak of Fig. 5

is given in Fig. 6. As noted in section III, it is a gaussian near T = 0, but becomes an

exponential for higher temperatures. The figure shows that the surface needs to be cooled

to a temperature T 5 30K to ensure that the elastic peak is measurable.

We have also examined the possibility of using other heavy noble gases as incident

14



atoms. Clearly, for Kr or Xe, the scattering is closer to adiabatic than for Ar. However, the

larger well-depths which these incident atoms experience reduces the Debye-Wller factor

so much that the no-loss line is very small. We have also examined different crystals, to

see if a larger Debye-Wa&ller factor is likely to be found. In Table IV, we give results for

three other surfaces : Ag, Al and Au. The potentials and surface elastic properties for

these surfaces were estimated in the same way as those of Cu. Although the well-depth

for Ag is very close to that of Cu, the increase in a, due to the lower Debye temperature,

reduces its Debye-Waller factor . In the case of Al, it is the increased well-depth that leads

to the reduction in the small Debye-Waller factor, while for Au, both these effects occur.

However any of these surfaces are possible candidates for seeing this effect. On the other

hand, the well-depth for Ar on W is so large' 8 (-.- 100 meV) that it is an unpromising

choice.

V. Conclusions

A heavy incident atom, with fixed (thermal) energy scatters almost adiabatically from

a target surface. For T = 0, in the limit of infinite mass, the Debye-Waller factor tends to

a finite limit (< 1). This is because the slowly moving incident atom can only excite low

frequency phonons. We used the trajectory approximation to estimate the final energy

spectrum. We find that 20 meV Ar striking a cold (T < 30K) Cu(111) surface should

exhibit substantial (about 10%) purely elastic scattering. Other rare gas/metal systems

appear to be less favorable. This Debye-Waller factor becomes negligible at T : 100 K.

We have also shown in Appendix C that, for quasi-adiabatic weakly inelastic scattering,

the trajectory approximation is valid. The question of its validity for strongly inelastic

scattering and for the scattering of light atoms will form the subject of future work.

Although we used several simplifying assumptions we stongly believe that our basic

15



conclusion, that in the adiabatic limit (m --, oo) the zero temperature Debye-Waller factor

tends to a finite value, is independent of these.
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Appendices

A. The Surface-Averaged Transfer Function.

In this appendix, we derive general expressions for the surfaced-averaged transfer func-

tion for a given atom-surface interaction. We restrict ourselves to potentials which may

be written u a sum of pair potentials, and whose static corrugation is relatively small.

We also consider only monatomic surfaces. We find the perpendicular component is a

constant, independent of the interaction, and the parallel components vanish.

For a many-body interaction which is the sum of pair potentials, we may write

Zv(r - r- u) Vj(z - Z(R, {u})) (A.1)

where Vj.(z - Z(R, {u})) is the perpendicular potential approximating the true potential

and v(r) is the interaction between the incident atom and a single surface atom, a distance

r apart. The label I ranges over all equilibrium positions r in the crystal, while ui are

the displacements of the crystal atoms from these positions. Now consider an infinitesimal

displacement u of the I = 0 atom (on the surface ). Then

Vj.(z - Zo(R) - u.f(R)) = v(r - rl - 61,o.ul) (A.2)
I

where f(R) is the transfer function (defined in the main text, equation (7)). Expanding

the potential functions about their equilibrium values, we find

v'(r) (A.3)
f(R) = V1(z - Zo(R))

where z = r/r=. The primes on the potentials indicate the derivatives with respect to their

explicit dependent variable, i.e. v'(r) = dv/dr,VI(z - Z0(R)) = aV±1/Oz. Note that,

despite appearances, f(R) is implicitly independent of z, by definition. Then

r(o)= f(dR ('(") )A.4)
v (z - Zo(R))

17



Now we make use of our second assumption, viz. that ZO(R) is fairly smooth, to replace

VI.(z - ZO(R)) in the above expression by its average and to bring it outside the integral

f'(0) = .ajd2Rv'(r)i. (A.5)

where

I d'RV' (z - Z(R)) (A.6)
- AJA

the average being taken over only one unit cell as the static potential hasthe translational

symmetry of the surface . From equation (A.4) we see from symmetry that the transverse

component,

P'(0) - 0. (A. 7)

To find 13(0), we note from equation (A.6)

-d
2 R - v(I - r1 ) (A.8)

IA (9Z

using equation (A.2) with u = 0. By replacing 'r - rl with a new variable r in each sum

we find

=jd2R! ) (A.9)- i .4 r

which, when substituted into equation (A.5), yields

f3 (O) = 1 (A.10)

the desired result.

B. The surface displacement partial spectral density perpendicular to the surface for an

isotropic elastic medium.

Near the adiabatic limit the incident atom excites only the low frequency phonons of

the crystal, so we use only the long wavelength properties of the crystal. We estimate th.
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desired quantities by treating the crystal as isotropic, which considerably simplifies the

calculations.

The properties of an isotropic elastic medium with a surface (at z = 0) were originally

calculated by Maradudin and Mills. 19 We define vq to be an eigenvector of the dynamical

matrix of the (half-)crystal, with normalization

.1 : v(1)vq,(1) = 6q,q, (B.1)

where 1 labels the equilibrium positions of the atoms in the crystal, and N is the number

of atoms in the crystal. As the crystal has translational symmetry parallel to the surface,

we may write

Vq(1) = Vq(13)eIQL. (B.2)

For bulk phonons far within the crystal (13 --- oo), vq( 1 3) = eqe i 3La, where &q is a polar.

ization vector of unit length. For bulk phonons at the surface of the crystal (13 = 0), the

lengths of these vectors are greater than 1, due to enhancement of atomic displacements

at the surface. Finally, for surface phonons, it should be noted that, for low frequency

displacements, as w -- 0, the displacement vectors grow as w 1/2 (for bulk phonons, they

are independent of w). In terms of these displacement vectors, we may now define the

Green's function by

d j(~31 j~ 2) (v *('3) )@( Vq( l' ) ) (B3
S - (.3)

q q

which has been Fourier transformed parallel to the surface. Here a and 0 denote the

Cartesian components. Then the displacement partial spectral density perpendicular to

the surface is defined as

g( 13; 1 (Vq(13))31'b(W - aq) (B.4)
q

yielding

(13; w)0 d2 2 Imd33(Q,13,13;w2 - ie) (B.5)
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where KD is the two-dimensional Debye wavenumber, defined by

r K(B.6)

and I (- 1/n 1/ 3 ) is a measure of the atomic spacing. Because we have an elastic continuum,

we may write

Imd3 3(Q,1 3 ,1 3; 2  ) = 3;w/Qc) (B.7)

where p is a dimensionless function, given (for 13 = 0) in equation (A6) of the appendix of

Stutki and Brenig,20 and ct is the transverse velocity of sound in the bulk. Substituting

this expression back into equation (B.5), and using the definition of KD given in equation

(B.6) and the standard Debye frequency, we find

9 _3;w W3l~ ww D ;)(A

where

6 ____Q (0)= 0;w) = 3 LG()(o) - G. (/Qc,)] (B.9)"y(3 =O; ) = 2 + a,--

ad

In) _ ~P(1 3 = 0 'G (z) fo '2+2n dz' (B.10)

Here o = cg/c is the ratio of transverse and longitudinal velocities in the bulk. Further-

more, as the Rayleigh velocity is the minimum velocity for any elastic wave in the surface,

G(z) = 0 for z < cR/ct, where cR is the Rayleigh wave velocity. Thus for low frequencies

y( 13;w) = 7(3$) is a constant. From equation (B.8) it is clear that 7(13) --' 1 as 13 --+ oo (the

interior of the crystal), while -y, 7(S13 = 0) is generally larger than one, due to enhance-

ment of atomic displacements at the surface. Furthermore we write < u2 >8= 7./(4MwD)

as a measure of the mean-square displacement perpendicular to the surface at the surface

(M is the mass of a surface atom). These definitions, and the spectral density of equation

(B.8), lead to the simple form of equations (22) and (23) of the main text.
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The result that g(w) is proportional to w2 for small w clearly depends only on the three-

dimensional nature of the crystal. It is only in estimating the proportionality constant

that we use the isotropic model as an approximation. For anisotropic crystals, we write

= ct/, where the velocities have been averaged over all directions in the bulk. 21

We conclude by noting that the factor jA occuring in equation (30) of the text, and

contributing to the width of the angular distribution, is simply G(1)(o)/G()(oo).

C. VaLidity of the Trajectory Approximation in the Quasi-Adiabatic Regime

In this appendix we show that, for weakly inelastic scattering and small displacements

of the surface atoms, the recoilless TA is valid in the quasi-adiabatic regime, i.e. when

the mass of the scattered particle becomes large. This is because the incident atom does

indeed behave classically, although the surface does not. We calculate the angle-integrated

energy loss spectrum using the distorted wave Born approximation , and compare results

with those found from equation (21).

In the language of quantum mechanical scattering theory we write, for the energy loss

spectrum,
22

rr2

E I - < aQTk,..kO >12 6(Ea - EO - e) (C.1)
Ic k3 a

where Tk,..k is the T matrix for scattering the incident atom with wavevector k to final

wavevector k', with energy loss e. It is an operator on the states lo > of the undisturbed

crystal, where 10 > is the ground state. These states have energy Ea. To find this

matrix element, we linearize the potential in the displacements of the surface atoms (see

equation (6)) and, for weakly inelastic scattering, apply the first order distorted wave Born

approximation: 22

<aTk ).k1O >= E_ < 'kk,iF (Z)1kk, > 6KC,.K+QUq(wq),(.2

q
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where T() is the leading inelastic contribution to the T matrix. Here 'k k 3(z) is the scat-

tering solution for an incident atom of perpendicular wavevector component k3 scattered

from Vo(z). We have again used r(G -r Q) = (0, 6Go) for simplicity. 23

The delta functions in equations (C.1) and (C.2) impose conservation of energy and

surface crystal momentum on the outgoing states. At fixed incident energy, as m -- c,

both k3 and k' --+ o, so that WKB wavefunctions 24 may be used to calculate the matrix

element containing Fj(z). We write

< khjIFj_(z)'kk, >= dzk; (z)Fz)&(z) + j dz'k,(z)F.(Z) &(z). (C.3)

Here, the origin of the z-axis is chosen at the classical turning point of the particle with

energy E, while zo is chosen such that zo > A, but also so that zo --1 0 as m --+ oo (in

a fashion described below). Thus, to evaluate the second integral, we may use the WKB

states. We define these by
x(±=() k / 3 e+,,O(,) (C.4)

x,, (z = k3(z)

where

O(Z) =z /k3(z')dz' (C.5)

and k3(z) = k2 - 2mVL(z). Then the physical scattering wavefunctions may be written

-3(Z) () + A-) X(-) (z) (C.6)

The second integral appearing in equation (C.3) will have four contributions. Consider the

first of these:

M(+)A+)A(+)" 1dFLZ) / 3k'

_ Ik 3 k6k,(C 7M+ 3  d( A ) 3 3 (dkF(Zexp{i k s(Z) - W,,()I} (c.7)

We may expand Ak 3() (- k3 () - k£(z)) for large m, and find Ak 3 (z) = mw/k 3(z) to

leading order in n 1 / 2 . In this expression, the denominator never vanishes, as we have

excluded the turning point from our integration interval. Next we consider the classical
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trajectory z,1(t) associated with the static perpendicular potential. We define it as a time-

symmetric function starting at -oc, reaching the turning point at t = 0 and continuing

on to +oo. On the interval 0 to oo, it is an invertible function of t, so that t = td(z)

is well-defined. Changing variables from z to t using this function, we find a very simple

result for the phase of our integral, viz.

ok 3 (z) - Wk:(z) = w(tc,(z) - to) (C.8)

where to = tdi(zo). We use the same change of variables for the entire integral, and use

k3 :_ k' in all other functions to get the leading order contribution:

- dtF4_(c(t) t), (C.9)

where v is the initial velocity of the incident particle. Finally, as m -+ oo and A -+ O,so

that to - 0, the inttgrand is well-behaved and we have

= (+),2 F( ) (C.l)A k3 I 2

where F,.(w) is the Fourier transform of the classical force exerted on the incident atom. In

an obvious notation, we find M( + - ) = M(- + ) = 0 due to the rapid oscillation of the phases

in the integrals, while, from symmetry, M(--) = 1A(-)12vFL(w)/2. Then, conservation

requirements yield

< ilJ_(z)J~k, >= vF, (w). (~l

Inserting tha matrix element back into the T matrix, and using that to calculate the

energy loss spectrum, we find identical results to the TA for weakly inelastic scattering

(i.e. expanding the exponential in equation (18) in a power series, and keeping only the

first term).

We conclude by showing that the first integral in equation (C.3) is negligible in the

adiabatic limit. First note that, for z < -zo, we may again use WKB to show that this
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contribution becomes exponentially small as m --* oo. Then, around the turning point

z = 0, there is a small interval, -d to d, in which the potential may be well-approximated

by a linear function. The value of d depends only on E and the shape of the potential, and

is therefore independent of rn. For -d < z < d, we may use Airy functions to approximate

the wavefunctions. If we choose z, = (2mF (t = 0)) - 1/3, where F(0) is the classical force

at the turning point, we find the integral from -z, to z, to be finite, and proportional to

z,. This choice obeys the requirements stated above, and yields a vanisking contribution

(of O(m-1/ 3)) s m --- o. This completes the proof.
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Table Captions

(I) Constants characterizing quasi-adiabatic scattering for three different potentials:

the exponential repulsion, the Morse potential and the potential used to model the Ar/Cu

system.

(II) Properties of Cu surface and Ar-Cu interaction used to calculate Fig. 5. The

sources are given in the main text. The potential parameters should not be regarded as

highly accurate.

(III) Calculated properties of quasi-adiabatic scattering for the energy loss spectrum

of Fig. 5.

(IV) Calculated Debye-Waler factors for Ar on three different crystals. D denotes the

estimated well-depth and a is defined by equation (23).
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constant exponential 'Morse Ar/Cu

102.07 25.1 21.7

1, 0.72 31.0 23.0

12 0.41 52.5 34.4

13 0.31 ill 64.9

e-2 W 0.93 0.04 0.10

0.07 3.1 2.3

Table I
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parameter symbol value

strength of repulsion AO 85.7 eV

repulsive decay length d 0.37A

Van der Waals constant C3  1.50 eV A3

position of reference plane Zre/ 0.259 A

depth of attractive well D 45.4 meV

surface phonon enhancement 1.8

Table H
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Ivariable value

D 8.2 meV

AE 19 meV

Tr 63 K

T ~19 K

t 14 K

1w 20

DIWD0.30

Table III
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metal D(naeV) aa e -2W N%

Ag 44.6 1.60 3.2

Al 64.5 1.18 1.1

Au 69.6 2.17 0.09

Table rV
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Figure Captions

(1) Typical (angle-integrated) energy loss spectrum for atom-scattering

from a cold surface. The no-loss line has been broadened to simulate finite

energy resolution.

(2) Change in energy loss spectrum for a heavy particle when incident

mass is doubled. The inelastic shoulder grows in height (by a factor of v/)

and is compressed towards AE = 0 (again by a factor of v2), so that its total

area remains unchanged. The no-loss peak does not change at all, so that

the Debye-Waller factor remains finite.

(3) Schematic of corrugation function for a many-body potential. (a)

The heavy lines indicate atomic positions and corrugation function at equi-

librium positions. The dashed line shows the change in the corrugation

function due to moving the central atom a small amount perpendicular to

the surface. (b) The transfer function in the perpendicular direction.

(4) Fourier transform of classical accelerations for two potentials in di-

mensionless variables : L, = wr and (" = i/v.

(5) Energy loss spectra for two potentials in the quasi-adiabatic regime.

Only weakly inelastic scattering occurs for the exponential (ft = 0.07), but

for the Morse potential, the acceleration due to the well leads to strongly

inelastic scattering (n = 3.1).

(6) Calculated total final energy spectrum for 20 meV Ar striking Cu

(111) at zero temperature. The scattering is about 10% elastic. An energy

resolution of only 10% was assumed, and the no-loss peak is clearly visible.

(7) The dependence on surface temperature of the peak shown in Fig.

5.
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